# Overview of Treatment, Completion, and Workover Fluids (TCW)

OOC briefing to EPA Region 6 /4

Dallas, TX

January 30, 2018



#### Overview

- Environmental Regulation Overview
  - Water Discharge and Waste Disposal
- TCW Operational Definitions
- TCW Categories
  - Category I Fluids
  - Category II Fluids
  - Category III Fluids
  - Category IV Fluids
- Questions



## Environmental Regulations: Offshore Operations Overview

Offshore well treatment, completion, and workover operations are governed by existing regulations and / or permits:

- Air Emissions regulated by BOEM through Air Quality Reviews or EPA via PSD / Title V regulations
- Water Discharges regulated by EPA through NPDES permits
- Wastes regulated by EPA, DOT, and states



### Water Discharges

- ☐ How Regulated?
  - EPA NPDES Permits
- ☐ In GoM, EPA has authority for permitting discharges to water under the NPDES program:
  - EPA Regions 4 (Eastern GoM) and 6 (Central & Western GoM)
  - Each region has issued a NPDES General permit for their area of the GoM (# GEG460000 and GMG290000, respectively)
  - Permits, in place since the 1990s, are renewed every five years to incorporate changes to requirements, initiate joint industry studies (JIPS) and the like
  - Permits contain specific testing requirements & limits for discharges
     associated with well treatment / completion / workover (TCW) operations



### Waste Disposal

- ☐ How Regulated?
  - EPA RCRA and Solid Waste regulations
  - DOT / State waste transportation regulations
  - State waste testing & disposal regulations
- If well TCW fluids do not meet NPDES discharge criteria, they are shipped to shore for disposal or recycle / reuse under the above regulations.
  - Discharges must meet an oil and grease daily maximum limitation of 42 mg/l and a monthly average limitation of 29 mg/l
  - No free oil as measured using the static sheen test method
  - No priority pollutants except in trace amounts



### **TCW Operational Definitions**

- Treatment fluid Any fluid used to remediate a well performance issue after a well has been drilled
  - May be composed of categories I-IV below
- Completion fluid Any fluid used in completing a new well
  - Typically composed of category I below and rarely category IV
- Workover fluid Any fluid used in the workover/recompletion/ or abandonment of an existing well
  - Typically composed of category I below, rarely category IV
- TCW fluids have significant overlaps and may consist of:
  - I. Fresh Water, Sea Water, and Salt Water Brines of Variable Density
  - II. Organic & Inorganic Acid and Non-reactive fluid systems
  - III. Hydraulic fracturing fluids- (typically formulated from category I fluids)
  - IV. Hydrocarbon based fluids



### What Are Category I Fluids?

- Typically clear brine based fluids used to treat, complete, or work over a well
  - Compatible with the formation, tubular goods, elastomers
  - Can be designed for long-term stability in the wellbore (packer fluids)
  - Can be formulated into non-reactive fluid systems
  - · Can be formulated into fracturing fluid
- May be comprised of:
  - Fresh water or sea water
  - Salt water brines of appropriate density for well control
    - (Also called clear brine fluids)



## Category I Fluid Properties Fresh & Brine Water-Based TCW Fluids

- Why do we use brines?
  - Clear brine fluids give us density control without solids (like in drilling mud)
  - Reduce damage to productive well intervals while still maintaining well control
- Fresh water weighs ~ 8.33 pounds per gallon (ppg) @ room temp.
- Sea water has approximately 3.5% salinity (mostly sodium chloride) and weighs 8.55 ppg @ room temp.
- Various salts may be mixed with fresh water (depends on required density)
  - Sodium chloride max density is ~ 10.0 ppg @ room temp.
  - Calcium chloride max density is ~ 11.8 ppg @ room temp.
  - Sodium bromide max density is ~ 12.7 ppg @ room temp.
  - Calcium bromide max density is ~ 15.3 ppg @ room temp.
  - Zinc bromide max density is ~ 21.0 ppg @ room temp.
  - All salts above may be blended in varying combinations to obtain different properties under various conditions of pressure and temperature



### Category I Fluid Formulations

- Typically comprised of one or more of the fluids listed on the previous slide:
  - Primary design factor is density (required for well control)
  - Secondary design factors are:
    - > Compatibility to the formation, reservoir fluids, tubulars and elastomers
    - Significant testing is accomplished to formulate blends that meet all requirements
  - Final fluid formulation provides the proper density for well control and is compatible with well equipment, reservoir fluids and reservoir conditions.
  - Completion fluids are typically referred to as "clear brine fluids" indicating that they are free of solids (which can damage the reservoir).



### Category II Fluids

- Organic & Inorganic Acids and/or blends of each
  - Always used as a treating fluid to remediate some form of damage in a well
  - Always inhibited to protect tubular goods, (elastomer compatibility is also checked)
  - Typically acetic & formic (organic) acids and hydrochloric & hydrofluoric (inorganic) acids are most commonly used
- Typically used to:
  - Remove scale damage
  - Improve permeability of sandstone and carbonate reservoirs and alleviate near-wellbore damage
  - Always a treatment fluid



### Category III Fluids

- Fracturing fluids typically use a Category I fluid as the base component
  - Small amounts of Polymers such as guar are used to give the fluid viscosity
  - Cross-linkers like boron are used to create a "Jell-O" like fluid consistency
    - Supporting additives are used to improve the cross-link function above, or improve performance of the fracturing fluid:
      - Buffers maintain favorable frac fluid pH to stabilize the cross-link
      - Surfactants improve wettability of the reservoir and fluid recovery
      - Breakers insure that the cross-link breaks as designed
  - Always a treatment fluid
  - Additives make up less than 5% of total fluid composition

|  |  | i |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ž |  |  |  |  |  |  |  |  |  |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |

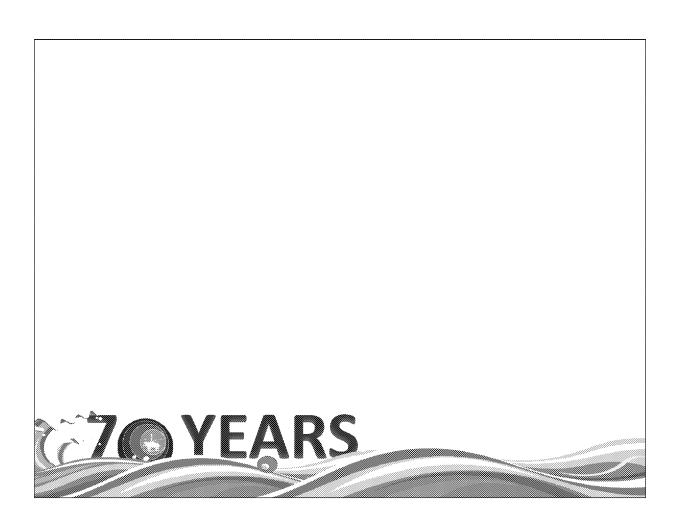
| Additive Name | Additive Quantity | Unit of Measure |
|---------------|-------------------|-----------------|
| Fresh Water   | 985               | gallons         |
| Salt (3% KCI) | 250               | pounds          |
| Polymer- guar | 20 – 40           | pounds          |
| Buffer        | 1-5               | gallons         |
| Surfactant    | 1-5               | gallons         |
| Cross-linker  | 1-3               | gallons         |
| Breaker       | 1-2               | pounds          |



### Category III Example Volumes

| FRAC STAGE TYPE                     | TYPICAL VOLUME PUMPED<br>(bbls/stage)<br>UNCONSOLIDATED FORMATION<br>FRAC PACK | TYPICAL VOLUME PUMPED<br>{bbis/stage}<br>CONSOLIDATED FORMATION<br>FRAC |
|-------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Misc Fluids / Workstring<br>Volumes | 1,500 – 7,000                                                                  | 1,500 – 7,000                                                           |
| Mini-Frac                           | 500 - 700                                                                      | 500 - 700                                                               |
| Mini-Frac Flush                     | 500 - 800                                                                      | 500 - 800                                                               |
| Main Treatment                      | 1,500 – 2,500                                                                  | 5,000 – 7,000                                                           |
| Main Treatment Flush                | 500 - 800                                                                      | 500 - 800                                                               |

Note: Typical pumped volumes denote representative volumes used in each respective environment Typical recovery volumes range from 10% - 30%. The remainder stays in the formation.




### Category IV Fluids

- Can be classified as either a treatment, completion, or workover fluid depending on how it is used
- The use of hydrocarbon-based fluids in TCW fluids is infrequent and is normally limited to the removal of waxes & asphaltenes from the wellbore and/or sand-face
- Some hydrocarbons can be gelled to act as fracturing fluids, but that is only when water-based fluids are extremely damaging to the reservoir and not common in the offshore environment
- Gelled hydrocarbons may also be used as packer fluids to control convective heat transfer in wells that have high bottom hole temperatures or high flow rates that create a high-temperature environment that could damage ancillary equipment
- Base oils can be used to perform negative testing for regulatory compliance





